注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

晓宝老师的网易官方博客

物质是一种利益,他能迷失我们的方向,世俗是一种言论,能扰乱我们的价值观

 
 
 

日志

 
 

二次函数的应用(1)  

2008-03-25 06:38:38|  分类: 教案编录 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

 

教学目标

(一)教学知识点

1.经历探索T恤衫销售中最大利润等问题的过程,体会二次函数是一类最优化问题的数学模型,并感受数学的应用价值.

2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.

(二)能力训练要求

经历销售中最大利润问题的探究过程,让学生认识数学与人类生活的密切联系及对人类历史发展的作用,发展学生运用数学知识解决实际问题的能力.

(三)情感与价值观要求

1.体会数学与人类社会的密切联系,了解数学的价值,增进对数学的理解和学好数学的信心.

2.认识到数学是解决实际问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.

教学重点

1.探索销售中最大利润问题.

2.能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.

教学难点

运用二次函数的知识解决实际问题.

教学方法

在教师的引导下自主学习法.

教学过程

Ⅰ.创设问题情境,引入新课

前面我们认识了二次函数,研究了二次函数的图象和性质,由简单的二次函数yx2开始,然后是yax2,yax2+c,最后是ya(xh)2,ya(xh)2+kyax2+bxc,掌握了二次函数的三种表示方式.怎么突然转到了获取最大利润呢?看来这两者之间肯定有关系,那么究竟有什么样的关系呢?我们本节课将研究有关问题.

Ⅱ.讲授新课

一、有关利润问题

某商店经营一种小商品,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在一段时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件.

 

请你帮助分析,销售单价是多少时,可以获利最多?

设销售单价为x(x≤13.5)元,那么

(1)销售量可以表示为________;

(2)销售额可以表示为________;

(3)所获利润可以表示为________;

(4)当销售单价是________元时,可以获得最大利润,最大利润是________.

今天我们就不妨来做一回商家.从问题来看就是求最值问题,而最值问题是二次函数中的问题.因此我们应该先分析题意列出函数关系式.

获利就是指利润,总利润应为每件T恤衫的利润(售价-进价)乘以T恤衫的数量.设销售单价为x元,则降低了(13.5-x)元,每降低1元,可多售出200件,降低了(13.5-x)元,则可多售出                件,因此共售出     件,若所获利润用y(元)表示,则                           

经过分析之后,大家就可回答以上问题了.

 (1)销售量可以表示为               

(2)销售额可以表示为                      2.

 (3)所获利润可以表示为                                  

(4)设总利润为y元,则

                                  

∴抛物线有最高点,函数有最大值.

x=      元时,

y最大=             元.

即当销售单价是            元时,可以获得最大利润,最大利润是     元.

二、做一做

还记得本章一开始的“种多少棵橙子树”的问题吗?我们得到表示增种橙子树的数量x(棵)与橙子总产量y(个)的二次函数表达式y=(600-5x)(100+x)=-5x2+100x+60000.

我们还曾经利用列表的方法得到一个猜测,现在验证一下你的猜测是否正确?你是怎么做的?与同伴进行交流.

 

 

 

 

 

 

 

三、议一议

(1)利用函数图象描述橙子的总产量与增种橙子树的棵数之间的关系.

(2)增种多少棵橙子树,可以使橙子的总产量在60400个以上?

图象如上图.

(1)当x                时,橙子的总产量随增种橙子树的增加而增加;

x               时,橙子的总产量随增种橙子树的增加而减小.

(2)由图可知,增种                           棵,都可以使橙子总产量在60400个以上.

四、补充例题

已知一个矩形的周长是24cm.

(1)写出这个矩形面积S与一边长a的函数关系式.

(2)画出这个函数的图象.

(3)当a长多少时,S最大?

 

 

 

 

 

Ⅲ.课堂练习

某商店购进一批单价为20元的日用商品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价可导致销售量的减少,即销售单价每提高1元,销售量就相应减少20件.如何提高单价,才能在半个月内获得最大利润?

随堂检测

某商场销售某种品牌的纯牛奶,已知进价为每箱40元,生产厂家要求每箱售价在40~70元之间.市场调查发现:若每箱以50元销售,平均每天可销售90箱,价格每降低1元,平均每天多销售3箱,价格每升高1元,平均每天少销售3箱.

(1)写出平均每天销售(y)箱与每箱售价x(元)之间的函数关系式.(注明范围)

(2)求出商场平均每天销售这种牛奶的利润W(元)与每箱牛奶的售价x(元)之间的二次函数关系式(每箱的利润=售价-进价).

(3)求出(2)中二次函数图象的顶点坐标,并求当x=40,70时W的值.在坐标系中画出函数图象的草图.

(4)由函数图象可以看出,当牛奶售价为多少时,平均每天的利润最大?最大利润为多少?

  评论这张
 
阅读(84)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017